|
صفحة: 75
לפי כלל הקיבוץ וכלל החילוף לפי כלל הצמצום השלישי לפי כלל הקיבוץ לפי כלל הפילוג לפי כלל היחידה לפי כלל היחידה שאלה 3 . 11 הוכיחו באופן אלגברי את הזהויות הבוליאניות הבאות ן 3 . 4 כללי דה-מורגן לעתים יש צורך לבצע פעולת היפוך בוליאני על ביטוי מורכב ( ולא על משתנה בודד , ( כגון י X + Y ? Z טיפול בביטויים מורכבים מסוג זה , בעזרת הכללים שהכרנו עד כה , יהיה מסורבל . דה-מורגן * הוכיח שני כללים המאפשרים פישוט ביטויים המכילים פעולות היפוך מורכבות ו א . A + B = A ? B ב . A ? B = A + B דה-מורגן , ( 1871-1806 , De-Morgan ) מתמטיקאי אנגלי , עסק במיוחד ביסודות האלגברה ובפיתוח סימול יעיל במתמטיקה ובלוגיקה .
|
|