3 . 5 כללי דה-מורגן לעתים יש צורך לבצע פעולת היפוך בוליאני על ביטוי מורכב ( ולא על משתנה בודד , ( כגון י X + Y-Z טיפול בביטויים מורכבים מסוג זה , בעזרת הכללים שהכרנו עד כה , יכול להיות יחסית מסורבל . דה-מורגן * הוכיח שני כללים המאפשרים פישוט ביטויים המכילים פעולות היפוך מורכבות : A , B הם משתנים או ביטויים בוליאניים כלשהם . שני כללים אלה דומים זה לזה והם נקראים כללי דה-מורגן . ( De-Morgan ' s rules ) נוכיח כללים אלה בעזרת טבלאות אמת ( טבלאות . ( 3 . 10 , 3 . 9 דה מורגן , ( 1871-1806 , De-Morgan ) מתמטיקאי אנגלי , עסק במיוחד ביסודות האלגברה ובפיתוח סימול יעיל במתמטיקה ובלוגיקה . שאלה 3 . 13
إلى الكتاب