3 . 4 כללי צמצום מלבד הכללים שהוכחנו עד כה , קיימים כללים נוספים לפישוט ביטויים לוגיים . כללים אלה נקראים כללי צמצום ( absorption rules ) או כללי ספיגה . פישוט ( או צמצום ) משמעותו - מציאת ביטוי לוגי זהה לביטוי המקורי , אך מכיל בדרך כלל פחות משתנים ופחות פעולות לוגיות . את הכללים היסודיים שלמדנו בסעיפים הקודמים אפשר היה להוכיח אך ורק בעזרת טבלת אמת . את הכללים שנלמד בסעיף זה אפשר להוכיח גם ללא שימוש בטבלת אמת . נעשה זאת תוך הסתמכות על הכללים היסודיים ( שחלקם נלמד כבר ) בדרך הוכחה הנקראת הוכחה אלגברית . ראוי לציין כי הוכחת זהויות בוליאניות בעזרת טבלת אמת היא דרך יעילה כל עוד מספר הצירופים הדורשים בדיקה אינו גדול . במקרים בהם מספר הצירופים גדול , עדיפה שיטת ההוכחה האלגברית . בסעיף זה נכיר את כללי הצמצום העיקריים , ונוכיח כל אחד מהם בדרך אלגברית . ( 1 ) כלל הצמצום הראשון X + ( X ? Y ) = X הוכחה . לפי כלל הכפל ביחידה X + { X-Y ) = X- \ + X- Y לפי כלל הפילוג = X- ( l + Y ) לפי כלל חיבור היחידה 1 = X לפי כלל הכפל ביחידה = X ( 2 ) כלל הצמצום השני כלל זה דואלי לכלל הצמצום הראשון :
إلى الكتاب